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1. Context: The role of non-electric applications in
Net Zero
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Power and Non-power Applications of Nuclear Energy

https://www.oecd-nea.org/climate change
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Carbon emissions avoided by nuclear power
and non-power applications
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https://www.oecd-nea.org/upload/docs/application/pdf/2022-05/7628_strategic_briefing_climate_change.pdf

SMRs are expected in a range of sizes and temperatures
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2. Techno-economics of non-electric applications
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There is already experience in nhuclear non-electric
applications

Beznau Nuclear Power Plant

« 67 reactors were used at least partially
for non-electric applications such as
district heating and water
desalination

« This is equivalent to about 750
reactor-years of experience

« Past experiences prove nuclear
cogeneration feasibility, with public

=a = The district heat extraction system was commissioned at the
accepta nce and Competltlveness as Beznau Nuclear Power Plant in 1984.
com pa red with other Iow-ca I‘bOI'I Today, the system consists of a 35 km of pipelines and provides

. 11 local municipalities with up to 150 GWh heat per year.
options
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Beyond District Heating and Desalination, Nuclear Heat Can Also
Be Used for Industrial Applications

NORWAY: Halden

« 20 MWth
* Operational between 1964-2018
+ Adjacent Paper Mill
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GERMANY: Stade

+ 30 MWth

» Operational between 1981-2003
« Salt Refinery 1.5 km away
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CANADA: Bruce A reactors

« 5,350 MWth (largest nuclear
steam system)

« Operational between 1973-1997

« Onsite applications (heavy water
production & building heating)

« Offsite applications, 6 km pipeline
(food processing, plastic _
products, etc.) - ¥
- )
UNITED KINGDOM: Calc SWITERZERLAND: G“gzgen 45
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Despite attractive market prospects, the implementation of
nuclear heat for industrial applications is not straightforward

] i ] Industrial heat demand by temperature in Europe
« Technical solutions to provide

nuclear heat beyond up to 500°C Accessible heat market for advanced
already exists (e.g high temperature nuclear in short- mid-term

reactors), and more could be 1400, geSSSSssssssssssssssssssssssss ~
demonstrated by 2035
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Source: NEA 2022.
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Breaking down process compatibility for nuclear heat applications

Process compatibility
(Level of engineering effort required)
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Breaking down process compatibility for nuclear heat applications

Process compatibility
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Breaking down process compatibility for nuclear heat applications

Process compatibility
(Level of engineering effort required)
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Advanced nuclear presents significant opportunities for low carbon
hydrogen production at a competitive costs

More efficient hydrogen
production processes such as
High Temperature Electrolysis
would leverage low-carbon high
heat produced from High
Temperature Reactors.
Although important uncertainties

D

w

N

remain, nuclear-hydrogen
systems beyond low-
temperature water
electrolysis offer aspirational
opportunities for large scale
production of low-carbon
hydrogen.

=

Levelized Costs of hydrogen (USS/kg)

o
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Levelised Costs of Hydrogen for High Temperature Reactors
M Levelized Cost of Electricity

Levelized Cost of Electrolyzer

Existing nu
and solari

High CapEx Low CapEx

High Temperature Reactor (SOEC)

Note: High CapEx = 4850 USD/kWe ; Low CapEx = 2000 USD/kWe. Hypotheses from

IEA/NEA (2020), Electricity Generation Costs and Energy Innovation Reform Project (2017),

What Will Advanced Nuclear Power Plants Cost? respectively.
Source: NEA, 2022
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Production costs do not provide the full picture of nuclear-based

hydrogen

Plant-level Analysis

Hydrogen
Production

The costs of hydrogen
production cover the costs
and load factor of the
source of electricity, as
well as the costs of
electrolysers.

© 2022 OECD/NEA

Value Chain Analysis

Hydrogen Delivery

The costs of hydrogen delivery take into account costs for
hydrogen storage, transport and distribution. To ensure a cost-
efficient infrastructure design, both the production and the
consumption characteristics must be taken into account.

System-level Analysis

Hydrogen Integration

Meeting expected demand for hydrogen from electrolysis would
lead to significant growth in electricity demand and require to
carefully assess how hydrogen can be integrated at the system-
level depending on the carbon constraint and the set of available
sources of electricity.

www.oecd-nea.org 14



Key conclusions and recommendations

Demonstration: supporting research and development and pilot projects
involving industrial players and regulators is key to accelerate the
expansion of non-electric applications of nuclear energy

Competiveness: Non-electric applications are likely to develop further if

nuclear-based options are more economical than the technical solutions
they replace, essentially coal or gas-fired production of heat.

Holistic approach: To succeed, projects should adopt an holistic
approach that takes into account end-user requirements as well as the
entire value chain beyond the production site.
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Thank you for your attention!

Learn more on: https://oecd-nea.org/
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http://www.oecd-nea.org/nuclear-hydrogen
https://www.oecd-nea.org/cogen22
https://www.oecd-nea.org/jcms/pl_70442/high-temperature-gas-cooled-reactors-and-industrial-heat-applications
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© 2022 OECD/NEA www.oecd-nea.org 17




SMRs Have an Important Role to Play Alongside Long-term
Operation and New Builds of Large Nuclear Power Plants

Full potential of nuclear contributions to Net Zero
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Source: NEA 2022.
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